Механические способности. Лекции по ткм. Основные свойства металлов и методы их изучения

  • 06.03.2023

Механические свойства – способность металла сопротивляться воздействию внешних сил, нагрузок. Поэтому при выборе материала необходимо, прежде всего, учитывать его основные механические свойства. Эти свойства определяют по результатам механических испытаний, при которых материал подвергают воздействию внешних сил (нагрузок).

Нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение – величина нагрузки, отнесенная к единице площади поперечного сечения испытываемого образца. Деформация – способность материала изменять свои формы и размеры под влиянием приложенных внешних сил (нагрузок). По направлению действия сил (нагрузок) возникают деформации растяжения, сжатия, изгиба, скручивания и среза. В практике, как правило, на деталь или изделие силы воздействуют не раздельно, а в комбинации друг с другом, в этом случае возникают сложные деформации.

Деформации могут быть: упругие и пластические.

Упругая деформация – после снятия нагрузки образец возвращается в свое первоначальное положение.

Пластическая деформация – после снятия нагрузки образец не возвращается в свое первоначальное положение.

Основными механическими свойствами являются:

1) Твердость. Твердость – способность металла сопротивляться внедрению в него другого более твердого тела;

2) Прочность. Прочность – способность металла сопротивляться разрушению;

3) Вязкость. Вязкость – способность металла сопротивляться удару или воздействию ударных динамических нагрузок;

4) Пластичность. Пластичность - способность металла сопротивляться деформации.

5) Усталость. Усталость – способность металла сопротивляться воздействию повторно-переменных напряжений. В процессе усталости происходит постепенное накопление повреждений материала под воздействием повторно-переменных напряжений, приводящий к образованию трещин и разрушению.

6) Выносливость. Выносливость – способность материала сопротивляться усталости. Предел выносливости – это максимальное напряжение, которое может выдержать металл без разрушения заданное число циклов нагружения. Предел выносливости определяется при изгибе и растяжении-сжатии.

Методы измерения твердости.

Методы определения твердости Обозначен. Формула Индентер или наконечник Примечания
Т Твердость по Бринеллю (Бринелль) HB HB=P/F 0 Ст. закал. шар. D: 2.5 >6 3-6 <3 P=KD 2 K=коэффиц. К=30 чер.Ме. К= 10цв. Ме. К=2,5антифрик ционных материалов Р-нагрузка F 0 - площадь отпечатка шарика D-диаметр шарика
Твердость по Роквеллу (Роквелл) HRB HRC HRA Ме. шар D=1.58 алмаз. конус. с < при вер.120 0 100+900=1000Н 100+1400=1500Н 100+500=600Н Р=Р 0 +Р 1 Р 0 =100Н-конст. Р – общая нагрузка Р 0 =100Н-конст Р 1 - дополнительная нагрузка
Твердость по Виккерсу (Виккерс) HV HV=1,85P/D 2 Алмаз. пирам. с < при вер.136 0 От 5 до 120 кгс. Р-нагрузка D-среднее арифмети- ческое двух диагона- лей отпечатка алмаз- ной пирамиды
Микротвердость H 0 H 0 =1,85P/D 2 Алмаз.пирам. с < при вер.136 0 От 5 до 500 гс.

Механические свойства материалов

совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм 2 или Мн/м 2 ), деформациями (в %), удельной работой деформации и разрушения (обычно в кгс м/см 2 или Мдж/м 2 ), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл ). М. с. м. определяются при механических испытаниях образцов различной формы.

В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам (рис. 1 ): работать на Растяжение , сжатие, Изгиб , Кручение , срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, Твёрдость , ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.

Диаграмма деформации. Приложенная к образцу нагрузка вызывает его деформацию (См. Деформация). Соотношения между нагрузкой и деформацией описываются т. н. диаграммой деформации (рис. 2 ). Вначале деформация образца (при растяжении - приращение длины Δl ) пропорциональна возрастающей нагрузке Р , затем в точке n эта пропорциональность нарушается, однако для увеличения деформации необходимо дальнейшее повышение нагрузки Р ; при Δl > Δl в деформация развивается без приложения усилия извне, при постепенно падающей нагрузке. Вид диаграммы деформации не меняется, если по оси ординат откладывать напряжение

(F 0 и l 0 - соответственно начальная площадь поперечного сечения и расчётная длина образца).

Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца

в кгс/мм 2 . Напряжение

при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузке Р Р n разгрузка образца приводит к исчезновению деформации, возникшей в нём под действием приложенного усилия; такая деформация называется упругой. Небольшое превышение нагрузки относительно Р n может не изменить характера деформации - она по-прежнему сохранит упругий характер. Наибольшая нагрузка, которую выдерживает образец без появления остаточной пластической деформации при разгрузке, определяет предел упругости материала:

Упругие свойства. В упругой области напряжение и деформация связаны коэффициентом пропорциональности. При растяжении σ = Еδ, где Е - т. н. модуль нормальной упругости, численно равный тангенсу угла наклона прямолинейного участка кривой σ = σ(δ) к оси деформации (рис. 2 ). При испытании на растяжение цилиндрического или плоского образца одноосному (σ 1 >0; (σ 2 = σ 3 = 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): δ 1 >0; δ 2 = δ 3

в пределах упругости для основных конструкционных материалов колеблется в довольно узких пределах (0,27-0,3 для сталей, 0,3-0,33 для алюминиевых сплавов). Коэффициент Пуассона является одной из основных расчётных характеристик. Зная μ и Е , можно расчётным путём определить и модуль сдвига

Сопротивление пластической деформации. При нагрузках Р > Р в наряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении - удлинение) достигает заданной величины (по ГОСТ - 0,2 %), называется условным пределом текучести и обозначается

Практически точность современных методов испытания такова, что σ п и σ е определяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 - α) на 25-50 %] и на величину остаточной деформации (0,003-0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2 ) или обрываться при достижении наибольшей нагрузки Р в ’ . Отношение

характеризует временное сопротивление (предел прочности) материала. При наличии максимума на кривой растяжения в области нагрузок, лежащих на кривой левее в , образец деформируется равномерно по всей расчётной длине l 0 , постепенно уменьшаясь в диаметре, но сохраняя начальную цилиндрическую или призматическую форму. При пластической деформации металлы упрочняются, поэтому, несмотря на уменьшение сечения образца, для дальнейшей деформации требуется прикладывать всё возрастающую нагрузку. σ в, как и условные σ 0,2 , σ n и σ е, характеризует сопротивление металлов пластической деформации. На участке диаграммы деформации правее в форма растягиваемого образца изменяется: наступает период сосредоточенной деформации, выражающейся в появлении «шейки». Уменьшение сечения в шейке «обгоняет» упрочнение металлов, что и обусловливает падение внешней нагрузки на участке Р в - P k .

У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром D под нагрузкой Р характеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d :

Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением

(где h 0 и h k - начальная и конечная высота образца), при кручении - предельным углом закручивания рабочей части образца Θ, рад или относительным сдвигом γ = Θr (где r - радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2 ) характеризует сопротивление разрушению металла S k , которое определяется

(F k - фактическая площадь в месте разрыва).

Характеристики разрушения. Разрушение происходит не мгновенно (в точке k ), а развивается во времени, причём начало в разрушения может соответствовать какой-то промежуточной точке на участке вк , а весь процесс заканчиваться при постепенно падающей до нуля нагрузке. Положение точки к на диаграмме деформации в значительной степени определяется жёсткостью испытательной машины и иннерционностью измерительной системы. Это делает величину S k в большой мере условной.

Многие конструкционные металлы (стали, в том числе высокопрочные, жаропрочные хромоникелевые сплавы, мягкие алюминиевые сплавы и др.) разрушаются при растяжении после значительной пластической деформации с образованием шейки. Часто (например, у высокопрочных алюминиевых сплавов) поверхность разрушения располагается под углом примерно 45° к направлению растягивающего усилия. При определенных условиях (например, при испытании хладноломких сталей в жидком азоте или водороде, при воздействии растягивающих напряжений и коррозионной среды для металлов, склонных к коррозии под напряжением) разрушение происходит по сечениям, перпендикулярным растягивающей силе (прямой излом), без макропластической деформации.

Прочность материалов, реализуемая в элементах конструкций, зависит не только от механических свойств самого металла, но и от формы и размеров детали (т. н. эффекты формы и масштаба), упругой энергии, накопленной в нагруженной конструкции, характера действующей нагрузки (статическая, динамическая, периодически изменяющаяся по величине), схемы приложения внешних сил (растяжение одноосное, двухосное, с наложением изгиба и др.), рабочей температуры, окружающей среды. Зависимость прочности и пластичности металлов от формы характеризуется т. н. чувствительностью к надрезу, оцениваемой обычно по отношению пределов прочности надрезанного и гладкого образцов

(у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос - в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной (рис. 3 ). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2r y (на рис. 3 , б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.

Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации K 1C и вязкость разрушения

При этом процесс разрушения рассматривается во времени и показатели K 1C (G 1C ) относятся к тому критическому моменту, когда нарушается устойчивое развитие трещины; трещина становится неустойчивой и распространяется самопроизвольно, когда энергия, необходимая для увеличения её длины, меньше энергии упругой деформации, поступающей к вершине трещины из соседних упруго напряжённых зон металла.

При назначении толщины образца t и размеров трещины 2l тр исходят из следующего требования

Коэффициент интенсивности напряжений К учитывает не только значение нагрузки, но и длину движущейся трещины:

(λ учитывает геометрию трещины и образца), выражается в кгс/мм 3/2 или Мн/м 3/2 . По K 1C или G 1C можно судить о склонности конструкционных материалов к хрупкому разрушению в условиях эксплуатации.

Для оценки качества металла весьма распространены испытания на ударный о изгиб призматических образцов, имеющих на одной стороне надрез. При этом оценивают ударную вязкость (См. Ударная вязкость) (в кгс м/см 2 или Мдж/м 2 ) - работу деформации и разрушения образца, условно отнесённую к поперечному сечению в месте надреза. Широкое распространение получили испытания на ударный изгиб образцов с искусственно полученной в основании надреза трещиной усталости. Работа разрушения таких образцов а ту находится в целом в удовлетворительном соответствии с такой характеристикой разрушения, как K 1C , и ещё лучше с отношением

Временна́я зависимость прочности. С увеличением времени действия нагрузки сопротивление пластической деформации и сопротивление разрушению понижаются. При комнатной температуре у металлов это становится особенно заметным при воздействии коррозионной (коррозия под напряжением) или др. активной (эффект Ребиндера) среды. При высоких температурах наблюдается явление ползучести (См. Ползучесть), т. е. прироста пластической деформации с течением времени при постоянном напряжении (рис. 4 , а). Сопротивление металлов ползучести оценивают условным пределом ползучести - чаще всего напряжением, при котором пластическая деформация за 100 ч достигает 0,2 %, и обозначают его σ 0,2/100 . Чем выше температура t , тем сильнее выражено явление ползучести и тем больше снижается во времени сопротивление разрушению металла (рис. 4 , б). Последнее свойство характеризуют т. н. пределом длительной прочности, т. е. напряжением, которое при данной температуре вызывает разрушение материала за заданное время (например, σ t 100 , σ t 1000 и т. д.). У полимерных материалов температурно-временная зависимость прочности и деформации выражена сильнее, чем у металлов. При нагреве пластмасс наблюдается высокоэластическая обратимая деформация; начиная с некоторой более высокой температуры развивается необратимая деформация, связанная с переходом материала в вязкотекучее состояние. С ползучестью связано и др. важное механическое свойство материалов - склонность к релаксации напряжений, т. е. к постепенному падению напряжения в условиях, когда общая (упругая и пластическая) деформация сохраняет постоянную заданную величину (например, в затянутых болтах). Релаксация напряжений обусловлена увеличением доли пластической составляющей общей деформации и уменьшением её упругой части.

Если на металл действует нагрузка, периодически меняющаяся по какому-либо закону (например, синусоидальному), то с увеличением числа циклов N нагрузки его прочность уменьшается (рис. 4 , в) - металл «устаёт». Для конструкционной стали такое падение прочности наблюдается до N = (2-5) ․10 6 циклов. В соответствии с этим говорят о пределе усталости конструкционной стали, понимая под ним обычно амплитуду напряжения

ниже которой сталь при повторно-переменной нагрузке не разрушается. При |σ min | = |σ max | предел усталости обозначают символом σ -1 . Кривые усталости алюминиевых, титановых и магниевых сплавов обычно не имеют горизонтального участка, поэтому сопротивление усталости этих сплавов характеризуют т. н. ограниченными (соответствующими заданному N ) пределами усталости. Сопротивление усталости зависит также от частоты приложения нагрузки. Сопротивление материалов в условиях низкой частоты и высоких значений повторной нагрузки (медленная, или малоцикловая, усталость) не связано однозначно с пределами усталости. В отличие от статической нагрузки, при повторно-переменных нагрузках всегда проявляется чувствительность к надрезу, т. е. предел усталости при наличии надреза ниже предела усталости гладкого образца. Для удобства чувствительность к надрезу при усталости выражают отношением

характеризует асимметрию цикла). В процессе уставания можно выделить период, предшествующий образованию очага усталостного разрушения, и следующий за ним, иногда довольно длительный, период развития трещины усталости. Чем медленнее развивается трещина, тем надёжнее работает материал в конструкции. Скорость развития трещины усталости dl/dN связывают с коэффициентом интенсивности напряжений степенной функцией:

Лит.: Давиденков Н. Н., Динамические испытания металлов, 2 изд., Л. - М., 1936; Ратнер С. И., Разрушение при повторных нагрузках, М., 1959; Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Прикладные вопросы вязкости разрушения, пер. с англ., М., 1968; Фридман Я. Б., Механические свойства металлов, 3 изд., М., 1974; Методы испытания, контроля и исследования машиностроительных материалов, под ред. А. Т. Туманова, т. 2, М., 1974.

С. И. Кишкина.

Рис. 3. Образец со специально созданной в вершине надреза трещиной усталости для определения K 1C . Испытания на внецентренное (а) и осевое (б) растяжение.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Механические свойства материалов" в других словарях:

    Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие … Википедия

    Материалов реакция материала на приложенные механич. нагрузки. Осн. характеристиками механич. свойств являются напряжения и деформации. Напряжения характеристики сил, к рые относят к единице сечения образца материала или изделия, конструкции из… … Физическая энциклопедия

    Материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие основные методы… … Википедия

    Механические свойства - – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры. К механическим относят деформативные свойства: прочность, твердость, истираемость,… …

    Механические свойства горной породы - – свойства, характеризующие возникновение, распределение и изменение механических напряжений и деформаций в горной породе при воздействии механических нагрузок. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов

    Свойства материалов - Термины рубрики: Свойства материалов Агрегация материала Активация материалов Активность вещества Анализ вещественный … Энциклопедия терминов, определений и пояснений строительных материалов

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

При оценке механических свойств металлических материалов различают несколько групп их критериев.

1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).

Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.

2. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

а) критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;

б) критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

3. Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Тема 3: Исследование свойств конструкционных материалов.

Классификация способов исследования материалов

Основные свойства металлов и методы их изучения.

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

  • «металлический блеск» (хорошая отражательная способность);
  • пластичность;
  • высокая теплопроводность;
  • высокая электропроводность.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т. е. принадлежать целой совокупности атомов.

Методы исследования.

Металлы и сплавы обладают разнообразными свойствами. Используя один метод исследования металлов, невозможно получить информацию о всех свойствах. Используют несколько методов анализа.

1. Определение химического состава.

2. Используются методы количественного анализа.

3. Если не требуется большой точности, то используют спектральный анализ.

Спектральный анализ основан на разложении и исследовании спектра электрической дуги или искры, искусственно возбуждаемой между медным электродом и исследуемым металлом.

Зажигается дуга, луч света через призмы попадает в окуляр для анализа спектра. Цвет и концентрация линий спектра позволяют определить содержание химических элементов. Используются стационарные и переносные стилоскопы.

4. Более точные сведения о составе дает рентгеноспектральный анализ.

Проводится на микроанализаторах. Позволяет определить состав фаз сплава, характеристики диффузионной подвижности атомов.

Общая характеристика механических свойств.

Это совокупность показателей, характеризующих сопротивление материала воздействующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим измеряют напряжениями (обычно в кгс/мм 2 или Мн/м 2 ), деформациями (в %), удельной работой деформации и разрушения (обычно в кгс м/см 2 или Мдж/м 2 ), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл ). М. с. м. определяются при механических испытаниях образцов различной формы.

В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам: работать на растяжение, сжатие, изгиб, кручение, срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, твердость, ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.

3) Методы стандартных испытаний по определению физико-механических свойств и технологических показателей материа­лов и готовых машиностроительных изделий, стандартные методы их проектиро­вания.

В процессе работы детали машин подвержены различным видам нагрузок. Для того, чтобы определить работоспособность сплавов в различных условиях нагружения проводят их испытания на растяжение, сжатие, изгиб, кручение и т. д.

Поведение металлов под действием внешних нагрузок характеризуется их механическими свойствами, которые позволяют определить пределы нагрузки для каждого конкретного материала, произвести сопоставимую оценку различных материалов и осуществить контроль качества металла в заводских и лабораторных условиях.

К испытаниям механических свойств предъявляется ряд требований. Температурно-силовые условия проведения испытаний должны быть по возможности приближены к служебным условиям работы материалов в реальных машинах и конструкциях. Вместе с тем методы испытаний должны быть достаточно простыми и пригодными для массового контроля качества металлургической продукции. Поскольку необходимо иметь возможность сопоставления качества разных конструкционных материалов, методы испытаний механических свойств должны быть строго регламентированы стандартами.

Результаты определения механических свойств используют в расчетной конструкторской практике при проектировании машин и конструкций. Наибольшее распространение имеют следующие виды механических испытаний.

1. Статические кратковременные испытания однократным нагружением на одноосное растяжение - сжатие, твердость, изгиб и кручение.

2. Динамические испытания с определением ударной вязкости и ее составляющих - удельной работы зарождения и развития трещины.

3. Испытания переменной нагрузкой с определением предела выносливости материала.

4.Испытания на термическую усталость.

5.Испытания на ползучесть и длительную прочность.

6. Испытания на сопротивление развитию трещины с определением параметров вязкости разрушения.

7. Испытания материалов в условиях сложнонапряженного состояния, а также натурные испытания деталей, узлов и готовых конструкций.

3.2. Свойства материалов

Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность - это способность материала сопротивляться разрушающему воздействию внешних сил.

Твердость - это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.

Упругость - это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость - это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Широкое распространение объясняется тем, что не требуются специальные образцы.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рис. 3.1.

Рис. 3.1. Схемы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

Твердость по Бринеллю (ГОСТ 9012)

Испытание проводят на твердомере Бринелля (рис.3.1 а)

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – , литой бронзы и латуни – , алюминия и других очень мягких металлов – .

Продолжительность выдержки : для стали и чугуна – 10с, для латуни и бронзы – 30с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / , НВ 5/ 250 /30 – 80.

Метод Роквелла (ГОСТ 9013)

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рис. 3.1 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” ( 1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р 1 , в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой .

В зависимости от природы материала используют три шкалы твердости.

Шкалы для определения твердости по Роквеллу


Метод Виккерса

Твердость определяется по величине отпечатка (рис.3.1 в).

В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 гс

Метод царапания.

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

Является энергетической характеристикой материала, выражается в единицах работы Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

Ударная вязкость определяется работой А, затраченной на разрушение образца, отнесенной к площади его поперечного сечения F; Дж/м 2:

Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания (жидкотекучестью), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии.

Ковкость - это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения.

Свариваемость определяется способностью материалов образовывать прочные сварные соединения.

Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.