Кпд воздушных винтов. Классификация воздушных винтов. Зависимость кпд от высоты и скорости полета

  • 13.03.2020

В последнее время отмечается определенное блуждание, а иногда и откровенное введение в заблуждение относительно выбора винта на моделях хоббистско-пилотажного профиля, к которым с определенными допущениями можно отнести и тренировочные модели. Причина здесь, кажется, в том, что по традиционно-спортивным направлениям давно выработаны ориентиры и проведены теоретические обоснования оптимального выбора винтов - в скоростных, гоночных, таймерных моделях. Чтобы придти к правильным критериям не сильно углубляясь в дебри классической теории винта предлагается на обсуждение следующий материал.

На первый взгляд теоретика все просто. Берешь внешнюю и дроссельные характеристики мотора и семейство аэродинамических характеристик имеющихся в продаже винтов, по последним строишь семейство графиков потребной мощности в тех же координатах, что и внешние характеристики мотора. Тогда в искомом скоростном режиме находишь пересечение графиков - вот и получил оптимальный винт. В жизни все сложнее. Если при должном трудолюбии внешние характеристики мотора еще можно снять на стенде, то продувочные характеристики модельных винтов - это вряд ли. Модельные фирмы, даже гранды, их тоже не дают. Выход напрашивается такой: за базовые параметры принимаются общепринятые или рекомендуемые изготовителем мотора, а дальше идет их последовательное приближение в нужную конструктору сторону. Для этого надо хотя бы качественно понимать, как те или иные конструктивные параметры влияют на характеристики винта. Об этом и пойдет дальше речь.

Начнем все же с основных положений теории винта, взяв из нее лишь несколько формул:

Тяга винта

Мощность, потребная на вращение винта

Относительная поступь винта

Коэффициент тяги винта

Коэффициент мощности винта

Плотность воздуха

Обороты винта

Диаметр винта

Скорость самолета

Больше формул брать не будем, а то многим станет не интересно.

Аналитически здесь много не насчитаешь, потому что главное, это как ведут себя коэффициенты тяги и мощности винта, а также их отношение, определяющее КПД винта. Эти параметры устанавливаются эмпирически путем снятия продувкой в аэродинамической трубе характеристик конкретных винтов. Поэтому мы рассмотрим их качественное изменение в зависимости от разных параметров. Начнем с КПД. Для типового винта график выглядит так:


Обратите внимание, относительная поступь - величина безразмерная и равна единице при скорости полета 1м/сек, оборотах винта 60 об/мин и его диаметре 1 метр. Теперь надо объяснить, почему график выглядит так. При нулевой поступи КПД равен нулю, потому что винт не совершает никакой работы - самолет стоит на месте. При поступи 1,6 данный винт также не совершает работы, потому что его шаг таков, что лопасти движутся с нулевым углом атаки (т.е. перпендикулярно потоку) и не образуют никакой тяги. Для винтов с другим шагом общий вид графика такой же, но он пропорционально сжат (при меньшем шаге) или растянут (при большем шаге) по оси . При скольжении 20-30% (для данного винта в области =1.1 - 1.4) КПД винта максимален и может достигать значения 0,8. Это наиболее выгодная область с точки зрения использования мощности двигателя. Интересно, что в этой области КПД меняется незначительно, т.е. при понижении скорости в этом диапазоне тяга пропорционально возрастает, что положительно сказывается на устойчивости полета по скорости. При скольжении менее 15 - 20% КПД начинает резко падать, потому что угол атаки лопасти снижается, соответственно падает лопасти винта и снижается его тяга. В диапазоне относительной поступи от 0 до 0,9 КПД винта почти линейно зависит от скорости, что указывает на почти неизменную его тягу!!!. Т.е. вопреки расхожему мнению, тягу правильно подобранного винта в полете можно довольно точно определить по статической тяге с небольшими поправками. Если поточнее посмотреть на эту часть графика, то он несколько выпуклый в левой половине. Это происходит потому, что тяга винта несколько уменьшается при снижении скорости вследствии увеличения нагрузки на винт B (см. формулу, там скорость в знаменателе, да еще и в квадрате). Типовая зависимость при изменении B от нуля до 10 выглядит так:


Падение коэффициента тяги связано с изменением характера потока воздуха перед винтом при снижении скорости. Но нам важна не причина, а то, что правильно подобранный винт в статике дает тягу, меньшую тяги при максимуме КПД, не более чем на 15 %.

Теперь о том, что такое правильно подобранный винт. Вернемся к графику КПД. Если на нем нанести семейство графиков винтов, различающихся только шагом, то они будут напоминать имеющийся, но сжатый, либо растянутый по оси , как это упоминалось выше. Правда максимум КПД при уменьшении шага тоже уменьшается. Значение максимума 0,8 имеет место в случае, если оптимальное скольжение винта попадает на относительную поступь величиною около единицы. Это и есть один из критериев правильно подобранного винта.

Чтобы оценить, где находятся типовые значения возьмем мотор 40-го объема с мощностью 1,3 л.с. при 14000 оборотах в минуту и посчитаем типовой для этого случая винт размера 250 на 150. При пилотажной скорости 90 км/час получаем равным 0,43. При такой поступи максимальный КПД не превысит 0,6. Чтобы получить такой КПД шаг винта при скольжении 20% должен составить около 9 сантиметров, а для реализации располагаемой мощности с таким шагом диаметр винта надо увеличить до 27 - 30 сантиметров. С указанным же выше шагом КПД будет не выше 0,5. Такой низкий КПД получается из-за слишком высоких оборотов двигателя на максимальной мощности.

Посмотрим, как выглядят в свете выше сказанного профессионалы F3A. Подавляющее их большинство летают на OS MAX 140 RX с винтом 16 на 14 дюймов на скоростях 90 - 70 км/час при оборотах мотора около 9000. 14-ти дюймовый винт оптимален при 25% скольжении на скорости около 180 км/час. При 90 км/час его КПД составит 0,65, а при 70 км/час - 0,5. Простой расчет показывает, что в диапазоне скоростей 50 - 100 км/час тяга этого винта вообще от скорости не зависит, а определяется только оборотами мотора. Наверное именно это нравится профессионалам, т.к. с данным винтом в пилотажном диапазоне скоростей существует взаимно однозначная связь между положением ручки газа и тягой мотора. Оптимальный же винт размером 18 на 8 дюймов даст тягу, большую процентов на двадцать при 90 км/час, но она будет зависеть не только от оборотов мотора, но и от скорости самолета. Профи согласны пожертвовать этой добавкой ради лучшей управляемости тягой.

Наихудшее положение у таймерных моделей. Там мотор крутит до 30000 оборотов в минуту, а скорость подъема самолета маленькая. При очень маленьком диаметре винта нагрузка на винт получается жуткой. В контексте сказанного очень правдоподобно звучит замечание Е.Вербицкого, упомянутое в 5 номере МСиХ за 1999 год. Там сказано, что по его расчетам "...обычные воздушные винты F1C диаметром 180 мм на частоте вращения 28000 об/мин обладают эффективностью порядка 40%. Путем снижения оборотов до 7000 с помощью редуктора при одновременном увеличении диаметра воздушного винта можно увеличить КПД винта до 80%". Такие же результаты получились у автора этого материала.

Вот у радиогонок - там как раз наоборот. Там скорости такие, что почти под любые обороты можно рассчитать винт с КПД близким к 0,8. Выше мало внимания уделялось коэффициенту мощности . Это не случайно. Дело в том, что данный параметр важен при расчетах экстремального режима. Если винт рассчитан на максимум тяги при максимуме мощности, то на частичных режимах, о которых говорилось в основном, есть уверенность что мощности двигателя хватит. Причем независимо от внешней характеристики мотора, потому что обороты в формуле потребной мощности стоят в третьей степени . Так быстро мощность не может падать со снижением оборотов даже у двигателей с резонансным выхлопом и скоростными фазами газораспределения. Для пилотажных моделей важнее не экстремальные режимы, а весь диапазон скоростей и нагрузок на винт.

Несколько строк о ширине лопасти. Широко распространено мнение, что уменьшая ширину лопасти винта можно несколько повысить его КПД. Это действительно так, но для скоростных режимов с относительно небольшой нагрузкой на винт. Для винта с узкой лопастью характеристика идет более круто. Настолько, что на большой нагрузке КПД винта с более широкой лопастью получается выше. Вместе с тем, это происходит в области малых абсолютных значений КПД.

Для низких скоростей полета при высокооборотных моторах снижать шаг и увеличивать диаметр винта можно не беспредельно. При угле атаки лопасти, меньшем наивыгоднейшего по поляре данного профиля, тяга единичного элемента снижается быстрее, чем растет ометаемая площадь винта. Т.е. для медленного полета есть минимальный шаг, дальше которого оптимизация винтомоторной установки возможна исключительно через редуктор.

Какие из выше означенных пространных рассуждений можно сделать выводы?

Первый - правильно подобранный винт обеспечит пилотажке примерно постоянную максимальную тягу в широком диапазоне скоростей полета, начиная от старта.

Второй - существующие модельные двигатели из-за скоростной внешней характеристики не позволяют на медленном пилотаже современных тенденций F3A использовать винты с хорошим КПД. Кстати из этого вывода следует широко представленное в статьях МСиХ мнение о важности для пилотажных и тренировочных моделей кубатуры двигателя, а не его мощности, в частности авторами А.Соколовым и Д.Дмитриевым.

Третий - для современного 3D-пилотажа и на самолетах типа фан-флай перспективным можно считать применение мотор-редуктора с резко увеличенным диаметром винта. Только этот путь позволит резко (вдвое) улучшить соотношение тяга/вес мотоустановки. Тогда можно расчитывать на большой запас тяги на вертолетных скоростях и висении. Сейчас на Diamante висят с винтами 310 на 95 мм. Это предел, ниже снижать шаг уже неэффективно.

И последнее - о винтах изменяемого шага. На моделях пилотажного типа их применение нецелесообразно. ВИШ, конечно, позволит на малых скоростях дать прирост тяги за счет более высокого КПД, но этот прирост там не нужен. К тому же этот прирост будет меньше теоретического из-за аэродинамической крутки лопасти. В отличие от вертолетных винтов, у самолетных приличная крутка, оптимальная только на одном шаге. В большой авиации ВИШ получил распространение в основном для обеспечения высокой экономичности мотоустановки, что для моделей роли не играет.

P.S. В материале приведены формулы и графики из монографий Александрова В.Л. "Воздушные винты" и Болонкина А.А. "Теория полета летающих моделей". В расчетах КПД использовалась сетка аэродинамических характеристик английского винта из последней работы.

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, n b , будет меньше мощности двигателя N e , затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается h . Он определяется по формуле

Рис. 11 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 12 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 13 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 11.

График Рис. 12 называется характеристикой силовой установки по мощности.



При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 13.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).

Рис. 14 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя Ne будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 14 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей j возрастает от своего минимального значения j мин до максимального j макс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 14, а видно, что угол атаки лопасти перед взлетом (V=0) за счет перетекания воздуха со скоростью DV немного отличается от угла наклона лопасти на величину фмин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 14, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол j ср .

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение рмакс (Рис. 14, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Лопастной винт самолета, он же пропеллер или лопаточная машина, которая приводится во вращение с помощью работы двигателя. С помощью винта происходит преобразование крутящего момента от двигателя в тягу.

Воздушный винт выступает движителем в таких летательных аппаратах, как самолеты, цикложиры, автожиры, аэросани, аппараты на воздушной подушке, экранопланы, а также вертолеты с турбовинтовыми и поршневыми двигателями. Для каждой из этих машин винт может выполнять разные функции. В самолетах он используется в качестве несущего винта, который создает тягу, а в вертолетах обеспечивает подъем и руление.

Все винты летательных аппаратов делятся на два основных вида: винты с изменяемым и фиксированным шагом вращения. В зависимости от конструкции самолета винты могут обеспечивать толкающую или тянущую тягу.

При вращении лопасти винта захватывают воздух и производят его отброс в противоположном направлении полета. В передней части винта создается пониженное давление, а позади – зона с высоким давлением. Отбрасываемый воздух приобретает радиальное и окружное направление, за счет этого теряется часть энергии, которая подводится к винту. Сама закрутка воздушного потока снижает обтекаемость аппарата. Сельскохозяйственные самолеты, проводя обработку полей, имеют плохую равномерность рассеивание химикатов из-за потока от пропеллера. Подобная проблема решена в аппаратах, которые имеют соосную схему расположения винтов, в данном случае происходит компенсация с помощью работы заднего винта, который вращается в противоположную сторону. Подобные винты установлены на таких самолетах, как Ан-22 , Ту-142 и Ту-95 .

Технические параметры лопастных винтов

Наиболее весомые характеристики винтов, от которых зависит сила тяги и сам полет, конечно же, шаг винта и его диаметр. Шаг – это расстояние, на которое может переместиться винт за счет ввинчивания в воздух за один полный оборот. До 30-х годов прошлого века использовались винты с постоянным шагом вращения. Только в конце 1930-х годов практически все самолеты оснащались пропеллерами со сменным шагом вращения

Параметры винтов:

    Диаметр окружности винта – это размер, который описывают законцовки лопастей при вращении.

    Поступь винта – реальное расстояние, проходящее винтом за один оборот. Данная характеристика зависит от скорости движения и оборотов.

    Геометрический шаг пропеллера – это расстояние, которое мог бы пройти винт в твердой среде за один оборот. От поступи винта в воздухе отличается скольжением лопастей в воздухе.

    Угол расположения и установки лопастей винта – наклон сечения лопасти к реальной плоскости вращения. За счет наличия крутки лопастей угол поворота замеряется по сечению, в большинстве случаев это 2/3 всей длины лопасти.

Лопасти пропеллера имеют переднюю – режущую – и заднюю кромки. Сечение лопастей имеет профиль крыльевого типа. В профиле лопастей имеется хорда, которая имеет относительную кривизну и толщину. Для повышения прочности лопастей винта используют хорду, которая имеет утолщение к корню пропеллера. Хорды сечения находятся в разных плоскостях, поскольку лопасть изготовлена закрученной.

Шаг винта является основной характеристикой гребного винта, он в первую очередь зависит от угла установки лопастей. Шаг измеряется в единицах пройденного расстояния за один оборот. Чем больший шаг делает винт за один оборот, тем больший объем отбрасывается лопастью. В свою очередь увеличение шага ведет за собой дополнительные нагрузки на силовую установку, соответственно, количество оборотов снижается. Современные летательные аппараты имеют возможность изменять наклон лопастей без остановки двигателя.

Преимущества и недостатки воздушных винтов

Коэффициент полезного действия винтов на современных самолетах достигает показателя в 86%, это делает их востребованными авиастроением. Также нужно отметить, что турбовинтовые аппараты значительно экономнее, чем реактивные самолеты. Все же винты имеют некоторые ограничения как в эксплуатации, так и в конструктивном плане.

Одним из таких ограничений выступает «эффект запирания», который возникает при увеличении диаметра винта или же при добавлении количества оборотов, а тяга в свою очередь остается на том же уровне. Это объясняется тем, что на лопастях пропеллера возникают участки со сверхзвуковыми или околозвуковыми потоками воздуха. Именно этот эффект не позволяет летательным аппаратам с винтами развить скорость выше чем 700 км/час. На данный момент самой быстрой машиной с винтами является отечественная модель дальнего бомбардировщика Ту-95 , который может развить скорость в 920 км/час.

Еще одним недостатком винтов выступает высокая шумность, которая регламентируется мировыми нормами ICAO. Шум от винтов не вписывается в стандарты шумности.

Современные разработки и будущее винтов самолета

Технологии и опыт работы позволяют конструкторам преодолеть некоторые проблемы с шумностью и повысить тягу, миновав ограничения.

Таким образом удалось миновать эффект запирания за счет применения мощного турбовинтового двигателя типа НК-12, который передает мощность на два соосные винта. Их вращение в разные стороны позволило миновать запирание и повысить тягу.

Также используются на винтах тонкие саблевидные лопасти, которые имеют возможность затягивания кризиса. Это позволяет достичь более высоких показателей скорости. Такой тип винтов установлен на самолете типа Ан-70.

На данный момент ведутся разработки по созданию сверхзвуковых винтов. Несмотря на то что проектирование ведется очень долго при немалых денежных вливаниях, достичь положительного результата так и не удалось. Они имеют очень сложную и точную форму, что значительно затрудняет расчеты конструкторов. Некоторые готовые винты сверхзвукового типа показали, что они очень шумные.

Заключение винта в кольцо – импеллер – является перспективным направлением развития, поскольку снижает концевое обтекание лопастей и уровень шума. Также это позволило повысить безопасность. Существуют некоторые самолеты с вентиляторами, которые имеют ту же конструкцию, что и импеллер, но дополнительно оснащаются аппаратом направления воздушного потока. Это значительно повышает эффективность работы винта и двигателя.

полете самолет все время преодолевает сопротивле­ние воздуха. Эту работу выполняет его силовая уста­новка, состоящая либо из поршневого двигателя внут­реннего сгорания и воздушного винта, либо из реактив­ного двигателя. Мы кратко расскажем только о воздуш­ном винте.

С воздушным винтом каждый из нас знаком с дет­ства.

В деревнях ребята часто устанавливают на воротах двухлопастную ветрянку, которая при ветре вращается так быстро, что лопасти ее сливаются в сплошной круг. Ветрянка и есть простейший винт. Если насадить такой винт на ось, сильно закрутить между ладонями и вы­пустить, то он с жужжанием полетит вверх.

Воздушный винт самолета насаживается на вал дви­гателя. При вращении винта лопасти набегают на воз­дух под некоторым углом атаки и отбрасывают его назад, благодаря чему, как бы отталкиваясь от воздуха, стре­мятся двигаться вперед. Таким образом, при вращении воздушный винт развивает аэродинамическую силу, на­правленную вдоль оси винта. Эта сила тянет самолет вперед и поэтому называется силой тяги.

Воздушный винт может иметь две, три или четыре лопасти. Профиль (сечение) лопасти подобен профилю крыла.

В работе по созданию силы тяги большую роль иг­рают шаг воздушного винта и угол установки лопасти к плоскости вращения.

Шагом воздушного винта называют расстояние, ко­торое винт должен был бы пройти за один свой полный оборот, если бы он ввинчивался в воздух, как болт в гайку. В действительности же при полете самолета воздушный винт из-за малой плотности воздуха продви­гается на несколько меньшее расстояние.

Шаг воздушного винта получается тем больше, чем больше угол установки лопасти к плоскости вращения (рис. 17, а).

Таким образом, винт с большим углом установки ло­пастей быстрее «шагает», чем винт с малым углом уста­новки (подобно тому как болт с крупной резьбой быст­рее ввинчивается в гайку, чем болт с мелкой резьбой). Следовательно, винт с большим шагом нужен для боль­шой скорости полета, а с малым шагом - для малой скорости.

Работа лопастей воздушного винта подобна работе крыла. Но движение винта сложнее. В отличие от крыла лопасти винта в полете не только движутся вперед, но еще и вращаются при этом. Эти движения складываются, и поэтому лопасти винта движутся в полете по некото­рой винтовой линии (рис. 17, б). Посмотрим, как возни­кает сила тяги воздушного винта.

Для этого выделим на каждой лопасти маленький элемент, ограниченный двумя сечениями (рис. 17, а). Его можно считать за маленькое крыло, которое в полете движется по винтовой линии, набегая на воздух под не­которым углом атаки. Следовательно, элемент лопасти, подобно крылу самолета, создаст аэродинамическую силу Р. Эту силу мы можем разложить на две силы - параллельно оси винта и перпендикулярно к ней. Сила,

Направленная вперед, и будет силой тяги элемента ло­пасти, вторая же, маленькая сила, направленная против вращения винта, будет тормозящей силой.

Элементарные силы тяги обеих лопастей в сумме дадут силу тяги Т всего винта, как бы прилаженную к его оси. Тормозящие силы преодолевает двигатель.

Сила тяги винта очень сильно зависит от скорости полета. С увеличением скорости она уменьшается. По­чему это происходит и какое имеет значение для по­лета?

Когда самолет стоит на земле и силовая установка работает, то лопасти винта имеют только одну скорость - окружную (рис. 17, а). Значит, воздух набегает на ло­пасть по направлению стрелки В, показанной в плоскости вращения винта. Угол между этой стрелкой и хордой про­филя лопасти будет, очевидно, углом атаки. Как видим, при неподвижном воздухе он равен углу установки ло­пасти к плоскости вращения. Иначе получается в полете, когда, кроме вращательного движения, винт движется еще и вперед (вместе с самолетом).

В полете эти движения складываются, и в результате лопасть движется по винтовой линии (рис. 17, б). По­этому воздух набегает на лопасть по направлению стрелки В1, и угол между ней и хордой профиля будет углом атаки. Вы видите, что угол атаки стал меньше угла установки. И чем больше будет скорость полета, тем меньше станут углы атаки лопастей, а поэтому тем меньше станет и сила тяги (при неизменном числе оборо­тов винта).

Этот недостаток в особенности присущ простому винту, у которого угол установки лопастей, а тем самым и шаг винта, нельзя изменять в полете (простой винт имеет и другие недостатки). Гораздо более совершенен винт из­меняемого шага (рис. 18). Такой винт благодаря особому устройству втулки без участия летчика изменяет свой шаг. Когда летчик уменьшает скорость полета, шаг винта тотчас же уменьшается, когда же летчик увеличивает скорость, винт увеличивает шаг.

Г. В. Махоткин

Проектирование воздушного винта

Воздушный винт завоевал репутацию незаменимого движителя для быстроходных плавсредств, эксплуатируемых на мелководных и заросших акваториях, а также для аэросаней-амфибий, которым приходится работать на снегу, на льду и на воде. И у нас и за рубежом накоплен уже немалый опыт применения воздушных винтов на скоростных малых судах и амфибиях . Так, с 1964 г. в нашей стране серийно выпускаются и эксплуатируются аэросани-амфибии (рис. 1) КБ им. А. Н. Туполева. В США несколько десятков тысяч аэролодок, как их называют американцы, эксплуатируются во Флориде.


Проблема создания быстроходной мелкосидящей моторной лодки с воздушным винтом продолжает интересовать и наших судостроителей-любителей. Наиболее доступна для них мощность 20-30 л. с. Поэтому рассмотрим основные вопросы проектирования воздушного движителя с расчетом именно на такую мощность.

Тщательное определение геометрических размеров воздушного винта позволит полностью использовать мощность двигателя и получить тягу, близкую к максимальной при имеющейся мощности. При этом особую важность будет иметь правильный выбор диаметра винта, от которого во многом зависит не только КПД движителя, но и уровень шума, прямо обусловленный величиной окружных скоростей.

Исследованиями зависимости тяги от скорости хода установлено, что для реализации возможностей воздушного винта при мощности 25 л. с. необходимо иметь его диаметр - около 2 м. Чтобы обеспечить наименьшие энергетические затраты, воздух должен отбрасываться назад струей с большей площадью сечения; в нашем конкретном случае площадь, ометаемая винтом, составит около 3 м². Уменьшение диаметра винта до 1 м для снижения уровня шума уменьшит площадь, ометаемую винтом, в 4 раза, а это, несмотря на увеличение скорости в струе, вызовет падение тяги на швартовах на 37%. К сожалению, компенсировать это снижение тяги не удается ни шагом, ни числом лопастей, ни их шириной.

С увеличением скорости движения проигрыш в тяге от уменьшения диаметра снижается; таким образом, увеличение скоростей позволяет применять винты меньшего диаметра. Для винтов диаметром 1 и 2 м, обеспечивающих максимальную тягу на швартовах, на скорости 90 км/ч величины тяги становятся равными. Увеличение диаметра до 2,5 м, увеличивая тягу на швартовах, дает лишь незначительный прирост тяги на скоростях более 50 км/ч. В общем случае каждому диапазону эксплуатационных скоростей (при определенной мощности двигателя) соответствует свой оптимальный диаметр винта. С увеличением мощности при неизменной скорости оптимальный по КПД диаметр увеличивается.

Как следует из приведенного на рис. 2 графика, тяга воздушного винта диаметром 1 м больше тяги водяного гребного винта (штатного) подвесного мотора «Нептун-23» или «Привет-22» при скоростях свыше 55 км/ч, а воздушного винта диаметром 2 м - уже при скоростях свыше 30-35 км/ч. Расчеты показывают, что на скорости 50 км/ч километровый расход топлива двигателя с воздушным винтом диаметром 2 м будет на 20-25% меньше, чем наиболее экономичного подвесного мотора «Привет-22».

Последовательность выбора элементов воздушного винта по приводимым графикам такова. Диаметр винта определяется в зависимости от необходимой тяги на швартовах при заданной мощности на валу винта. Если эксплуатация мотолодки предполагается в населенных районах или районах, где существуют ограничения по шуму, приемлемый (на сегодня) уровень шумов будет соответствовать окружной скорости - 160-180 м/с. Определив, исходя из этой условной нормы и диаметра винта, максимальное число его оборотов, установим передаточное отношение от вала двигателя к валу винта.

Для диаметра 2 м допустимое по уровню шума число оборотов будет около 1500 об/мин (для диаметра 1 м - около 3000 об/мин); таким образом, передаточное отношение при числе оборотов двигателя 4500 об/мин составит около 3 (для диаметра 1 м - около 1,5).

При помощи графика на рис. 3 вы сможете определить величину тяги воздушного винта, если уже выбраны диаметр винта и мощность двигателя. Для нашего примера выбран двигатель самой доступной мощности - 25 л. с., а диаметр винта - 2 м. Для этого конкретного случая величина тяги равна 110 кг.

Отсутствие надежных редукторов является, пожалуй, самым серьезным препятствием, которое предстоит преодолеть. Как правило, цепные и ременные передачи, изготовленные любителями в кустарных условиях, оказываются ненадежными и имеют низкий КПД. Вынужденная же установка прямо на вал двигателя приводит к необходимости уменьшения диаметра и, следовательно, снижению эффективности движителя.

Для определения ширины лопасти и шага следует воспользоваться приводимой номограммой рис. 4. На горизонтальной правой шкале из точки, соответствующей мощности на валу винта, проводим вертикаль до пересечения с кривой, соответствующей ранее найденному диаметру винта. От точки пересечения проводим горизонтальную прямую до пересечения с вертикалью, проведенной из точки, лежащей на левой шкале числа оборотов. Полученное значение определяет величину покрытия проектируемого винта (покрытием авиастроители называют отношение суммы ширин лопастей к диаметру).

Для двухлопастных винтов покрытие равно отношению ширины лопасти к радиусу винта R. Над значениями покрытий указаны значения оптимальных шагов винта. Для нашего примера получены: покрытие σ=0,165 и относительный шаг (отношение шага к диаметру) h=0,52. Для винта диаметром 1 м σ=0,50 м и h=0,65. Винт диаметром 2 м должен быть 2-лопастным с шириной лопасти, составляющей 16,5% R, так как величина покрытия невелика; винт диаметром 1 м может быть 6-лопастным с шириной лопасти 50:3=16,6% R или 4-лопастным с шириной лопастей 50:2 = 25% R. Увеличение числа лопастей даст дополнительное уменьшение уровня шума.

С достаточной степенью точности можно считать, что шаг винта не зависит от числа лопастей. Приводим геометрические размеры деревянной лопасти шириной 16,5% R. Все размеры на чертеже рис. 5 даны в процентах радиуса. Например, сечение D составляет 16,4% R, расположено на 60% R. Хорда сечения разбивается на 10 равных частей, т. е. по 1,64% R; носок разбивается через 0,82% R. Ординаты профиля в миллиметрах определяются умножением радиуса на соответствующее каждой ординате значение в процентах, т. е. на 1,278; 1,690; 2,046 ... 0,548.